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for 'I} , in the first approximation we obtain 

b = _+_d, 2 (bn --  d k ) , ~  + (× + l ) b d ~ , . ~  = ~ , ,  + , ~  (2.10)  

2 (bn --  ak) ~ + ( °5° ! + ~-~-z{ °S° ) '  -- x + t 2  bd* (4~ + *~ *)' 4 = 4 *  

For conditiom at the shock front we use functions for ~ = t0. The condition of im-  
penetrability at the surface (2.8)  for y ----- Y0 (b =~= 0) is bO]o / O~ = 4v.  By speci- 
fying for the perturbation front originating in a quiescent gas (4~ = 4~* ---- 0) the form 
of circle x ~ -~- y2 __ t 2 (or of sphere x ~ + ys _~_ z2 = t~), we find that n = ~ k, 

hence ~ = d (x - -+ : t )  and ~l = k ( x - T t ) .  
Thus for deriving the nonlinear equations for small unstable two- and throe-dimen-  

sional perturbations of a sonic stream or in a quiescent gas it is necessary to use the char- 
acteristic variables of the related linear equations of one-dimensional flows. Although 
equations in terrm of other variables can evidently be used, care must be taken to inter- 
pret these correctly. In particular, they can be used for defining flows whose unsteadiness 
becomes apparent only in the second approximation. Note that all solutions of the tran- 
sonic equation in variables x and t [1] can be rewritten for Eqs. (2. 2) and (2.10),  by 
reducing these beforehand to the form appearing in [1]. This applies also to transforma- 
tions that do not alter the form of the transonic equation (e. g. of that appearing in [4]) 
as well as the form of 'conditions at the shock front (or at a characteristic). Finally, a 
theorem of uniqueness, similar to that in [4] can be formulated for these equations. 
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A generalization is given of the problem on the impression of a circular stamp 
when the elastic stamp makes contact  with an unbounded elastic layer. Appli- 
cation of the Hankel integral transform in the region of the layer and the pro- 
perties of generalized orthogonality of eigenfunctions in the region of  the cir- 
cular cylinder (stamp) permits reducing the problem to an infinite system of 
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linear algebraic equations admitting of effective solution by the truncation method  
The classical problem of a rigid stamp impressed into an elastic hail-space has 

been subjected to generaLization in several directions in recent decades. Thus, 
the impression of a rigid stamp into an elastic layer bas been considered in a num- 
ber of papers (see [1], for example), on the other hand, the problem of the contact  
between an elastic cylinder and a half-space has been studied in [2]. Finally,the 
even more general problem on the impression of an elastic cylinder into an elas- 
tic layer has been investigated in [3]. The problem has been reduced to infinite 
Linear algebraic systems, which are effectively solvable for sufficiently thick lay- 
ers, since the solution is expanded in power series of a small  parameter, the ratio 
of the cylinder radius to the layer thickness. The same problem is reduced in this 
paper to infinite systems of a different kind, which are suitable for any ratios bet-  
ween the geometric parameters. Results of numerical  computations of the stiff- 
ness of the system under consideration are presented. 

1.  F o r m u l a t i o n  o f  t h e  p r o b l e m .  Let us consider an axisymmetric problem 
on the frictionless impression of an elastic cyLinder of radius a and height L in an elas- 
tic layer of thickness H which is at rest on a fixed base (Fig. 1). We introduce the cy-  
lindrical coordinates r, q), z and assume that the upper endface of the cylinder is trans- 
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lated by a quantity w0 and the surfaces z = L and 
z = - - H  are under smooth contact conditions. 
(The rest of the body surfaces remain stress free). 

It is convenient to go over to dimensionless co-  
ordinates by referring all the Linear dimensions to 
the radius 

p = - -  x = - - ,  l =L H 
a ' a a ' a 

Marking quantities referring to the cylinder with 
the subscript 1, and those referring to the layer with 
the subscript 2, we obtain the boundary conditions 
of the problem and the matching conditions in the 
following form: 

@) ( t ,  x) = @2 (1, ~) = o,  

wo ,.(1)(9, l ) = 0 ,  O ~ p ~ l  w( l ) ( p , l ) = w , - ~ ,  -~o 

• ~o ) (p, - h) = w(~) (P, - -  h) = O, o < ~ < 

T(z), ~otP, O ) = O ,  o ~ o < o ~  

z~ ) ( p , O ) = O ,  i < ~ <  

i;0) ~ (p ,0 )  = 0,  0 < p < i  

= ~ ( p , O ) ,  O ~ p < i  

w(1) (p, O) = w(2) (p, 0), o < p ~ l 

0 ~ z ~ < l  (t.i) 

(t .2) 

(1.3) 
(1.4) 
(~.5) 
(~.6) 

0.7) 
0.8) 

Here (u, 0,  w) am the displacement vector components, ax,  ao, "rxo am the stress 
temor  components. The notation vl, 2 and G1, 2 for the Poisson's ratio and the shear m o -  

dulus are also used henceforth. 
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2. Reduction of the solution to An inf in i te  alsebtaic system. 
The solution for a cylinder is constructed in the form of a series in homogeneous solu- 
tions of the problem of deformation of a cylinder with a free side surface for which the 
following complex functions are introduced [4, 5]: 

eh (P) = Yo (PDfo (PkP) + Pfl  (PDfl  (PW) 

6k (p) - 2 (l - ~,_______) ]1 (pk) J0 (pkp) 
P~ 

which have the property of generalized Schiff oxfhogonality 

¢ { O, p 2 : ~ p 2  (2.1) 
, [%' (p) 5,,' (p) -4- e~' (p) 6 / (9 ) ]  pdp = _ 2N,~, p,2 = pk~ 
o 

Here p k are roots of the transcendental equation 

{2 (1 - -  vl) - -  p2ljl~ (P) - p2 j o  9 (p) (2.2) 

where two pairs of complex-conjugate roots of the form 

p k = _ - ~ a h + . i b k ,  k = t , 2  . . . .  (%, b~ >0) 

can be set in correspondence with each number k (the elementary solution of the defor- 
mation of a cylinder corresponds to the root P0 = 0 ). As can be verified directly, in 
this problem it is sufficient to examine just roots in the half-plane Re p ~ 0, hence. 
it will later be assumed that 

Ph = ah-~ ibm, P-h = ak --  ibm, k = i , 2  . . . .  

Thus the displacements and stresses in the cylinder can be sought as series satisfying 
the conditions (1. 1), (1.2) (the sign of the summation E '  is extended over all integer 
k except zero; the argument p in the functions 8h, @a and their derivatives ek' , ~}h' 
is omitted) 

. s h  Pk (t  -- z )  
~0 ( ~ -  ~) ~, '  Ck (e~ - -  o d  eh pk~ (2 .3)  W(1) (p, X) = W. -4- 2Gx (i + ~)  /~ 

Zo~p ~ '  Ck ch p~ (l --  z) 
u(1) (p, x) = 2al (t + ~) "4- (e//"3 L ~}lt') eh pkl 

/t 

ZO) t,, X) = Zo 2G1 ~,' Ck (P%')' ¢h p~ (l --  x) 
x ~t ' ,  ~ p c h p k l  " 

k 

~(x) "C~k'Pk sh p~ (l -- z) ~0 (P, x) ----- -- 2Gx ~ ch 
k p ~ l  

~ 'C~ ( - -  t : ' ~  ] ch p~l 
(~1) (p, X) = 2G1 e [  + 8k" ~ p k ~  oh Pk (l --  z) 

# 

The terms corresponding to the numbers k and ~ k  in the formulas presented are 
complex-conjugates ( e  u ---- e _ ~  , etc. ). 

The solution for a layer can be comtmcted as a Hankel integral [1]. Let us present 
here just the expression for the normal stress and displacement at points of the surface 
x = 0  

~(~) . (p,0)  = XA (~).4 (~p) d~ (2.4) 
o 
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¢0 

w(2)(p, 0 ) = ~  A(M/(MJo(kp)dk ,  O • p < o o  (2.5) 
0 

sh 2 ~,h 
/ (~) = Lh -}- sh ~,h ch ~,h 

(conditions (L  3) and (1. 4) are satisfied for such a selection of the solution). 
Conditions (1. 5) and (1.7) can be written as 

~ ( p ,  0) = / ~l~(P'°) '  0 < p < t  
O, t < p < c o  

Hence, recalling the third formula in (2.3) and (2.4), we can obtain 
1 

A (M = S PJo (Lp) z(J ) (p, 01 do = ooao (k) -p 2G, ,'~" C ~  (M (2.6) 
0 k 

Here 
1 

ao (L) = ~ P]o (kp) dp (2.7) 
0 

1 1 

ak (~') -= - -  S Jo (XP) (,Oe~') ' dp ----- - -  ~, ~ Jx (~'O) pe]c'dp, k = "4- i ,  -I- 2 .... 
0 0 

The unsatisfied conditions (1. 6) and (1.8), which become 

2G~ ~" C~'p~ th pfl = 0, 0 ..< p ~< t (2. s) 

zol ~ '  Ck (sk - -  6~) p~ th  pkl = w (2) (P, 0), 0 ~ p ,<~ i 
w .  2G1 (t + ~1) 

remain, where w(2) (p, 0) is determined in terms of the coefficients ~0, Ch by means 
of(2.5) and (2. 6). 

The generalized orthogouality relation (2.1) permits reduction of the equality (2.8) 
to an infinite system by application of the foUowing method. Multiplying (2.8), respec- 
tively, by the functions vxp ~ [2G1 (1 if- ~1)] -1 and p, subtracting them and integrat- 
ing over the section [0, 1] with respect to p ,  we arrive after some computations at 

1 

~0 4Ct (i + vl) -[- w(~) (p' 0) pdp = ~ w .  
0 

Multiplying (2.8) analogously by (en' -t- 6n')P and 2Gx (pen') ' ,  subtracting and 
integrating, we have 

2CnNnpn th pnl -- ,f w(~: (p' 0) (pen')' dp = 0, n = fl= t,  "4- 2 .... 
0 

Taking account of(2.5) and (2.6), we arrive at an infinite system of equations after 
some formal calculations: 

i 
aoXo + g ~, bokXk = 

anXn -b g ~ bn~X~ ~ O, 

He re 

,, = - t - t , 4 - 2  .... 
(2.9) 
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l 
ao = 4.(t + vl) (2 .10 )  

a n = p n N = t h p n l ,  n = q - t , 4 - 2  .... 

o o  

bnk = (~. - -  "~) ~ ~xn (k)  ~x k (k)  [ (k) dk; ~, k = 0, 4- i ,  4- 2 .... 
0 

The Y, sign extends over all integer k; the quantities X0, X h  are connected with 
the fundamental unknowns Cro, Ck by the relations 

Xo = ~o Xk Ck k ----- -4- t,  -4- 2 .... 
2Glw, ' = w"-'. ' 

Passage to the l imit  h --+ 0 or G~ --+ oo yields 

X o  : a o / 4 ,  X~ : 0,  n--==[=i,-q-2 . . . .  

This remit determines the elementary solution of the problem of the compression of a 
cylinder by smooth rigid planes 

OrX (1) (D, X) : 2G1 ( t  -[- vx)w , / l 

There hence results that the system (2.9) is solvable most effectively for small h (by 
the method of iteration for example).  

3 .  N u m e r i ¢ • 1 t o I u t i o n .  The roots of the characteristic equation (2.2) needed 
for the numerical  realization of the solution found were taken from [6] for vx ---- 0.3 ; 
the Bessel functions of complex argument were determined by using the integral repre- 
sentation [7] x 

(~" / 2)q e izt (t - -  tg) q-'h dt, Re q > --  - -~ 
Jq (z) = F  (q -t- '/~) I' (ih) 

and the recursion formula -1  
2 

Yo (z) = %--0', (,.) - -  y~ (z) 

The quadratures (2.1) and (2.7)  turn out to be evaluable explicitly 

J i - - v ,  
N n = (i - -  va) J12 (pn) ~2 ~ J i  (Pn) [Jl  (F~) - -  PnJo (Pn)] @ J°~ (Pn)} 

i 
~0 (~) - -  T J1 (~) 

2~Mo (~.) 
(~  _ p,2)-. P~J12 (P~), n = 4- t ,  4- 9. . . . .  

The complex coefficients b,~k in (2. 10) for the infinite system ( 2 . 9 )  were determined 
by Simpson's role. The method of reduction was used for the numerical  solution on a 
BESM-4 computer. 

The ratio between the total axial force P and the magnitude of the displacement 
of  the cylinder upper endface w0 can be called the stiffness of the elastic system con- 
sidered. The following simple representation for the stiffness 

C = P / Wo = 2~GxaXo 
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was obtained by integrating the stress ox in the third relationship in (2.3) over the con- 
tact  area. 

T a b l e  1 

0 
1/4 
1/~ 

1 
2 

o o  

39.9 
21.0 
t2.0 
8 . t0  
5.44 

l l ie  

t3 i  
30.6 
t8 . t  
t l  .0 
7.6i 
5.23 

65.3 
24.8 
t5.9 
t0.1 
7.21 
5.02 

32.7 
t8 .0 
t2.8 
8.72 
6.50 
4.66 

t6.3 
t t . 6  

9. t9 
6.88 
5.42 
4.08 

8. t7 
6.78 
5.88 
4.84 
4.07 
3.27 

4.08 
3.71 
3.42 
3.04 
2.72 
2.34 

2.04 
t .94 
i .86 
t .75 
i .63 
t .49 

1.02 
O. 996 
0.974 
O. 940 
0.907 
0.860 

Presented in Table  1 are values of the dimensionless quantity C / G,a = 2~X0 com- 

gated for different values of the geometric parameters for G 1 = G2, %)1 = ~ 2  = 0.31 

Let us note that the solution of the problem on the elastic contact between a cylinder 
and a layer which adheres to a fixed base can aBo be reduced to an infinite system of 
equat iom of the type (2 .9)  and (2.10),  where just the function / (~) (see (2 .5) )  should 

be replaced in conformity with [8] in this case by 

IX (t + Ix) -4- 4 (t - -  ~) l  _ (3 - -  4~) e -~ sh IX 
] (~,) = t - -  (3 - -  4v2) shg Ix + Ixi -~- 4 (1 - -  ~)g ' Ix = kh 

The authors are grateful to B. M. NuUer for valuable remarks expressed during discus- 
sions of the research. 

REFERENCES 

1. L e b e d e v , N . N .  a n d  U f l i a n d , l a . S .  , Axisymmetric contact problem for 
an elastic layer. PMM Vol. 22, N --° 3, 1988. 

2 .  K i z y m a ,  I a .  M.  , Ax~ymmetr ic  problem on the impression of an elastic cylin= 

der on an elastic half=space. Izv. Akad. Nauk SSSR, Mekhan. Tverd. Tela ,  N ° 4, 

1969. 
3 .  K i z y m a ,  I a .  M.  , The impression of an e lect ic  cylinder on a finite thickness 

elastic layer. Izv. Akad. Nauk SSSR,Mekhan. Tverd. Tela,  N --° 3, 1972. 

4 .  N u l l e r ,  B. M.  , On the generalized orthogonality relation of P. A. Schiff. PMM 

Vol. 33, N -° 2, 1969. 
5 .  N u l l e r ,  B. M.  , Contact problem for an elastic semi=infinite cylinder. PMM 

Vol. 34, N~ 4, 1970. 
6.  L i t t l e ,  R . W .  a n d  C h i l d s ,  S. B. , Elastostatic boundary region in solid cy= 

linders. Quart. AppL Math. ,  Vol. 25, 1967. 
7,  G r a d s h t e i n , I .  S. a n d  R y z h i k , I . M .  , Tabtes of Integrals, Sums, Series 

and Products. Fizmatgiz,  Moscow, 1962. 
8 .  U f l i a n d ,  I a .  S. , Integral Transforms in Elasticity Theory Problems. "Nauka", 

Leningrad, 1967. 

Translated by M. D. F. 


